

SYLLABUS LINEAR ALGEBRA

by Ni Luh Dewi Sintiari, Ph.D.

S1 ILMU KOMPUTER STUDY PROGRAM INFORMATICS ENGINEERING DEPARTMENT UNIVERSITAS PENDIDIKAN GANESHA SINGARAJA TAHUN AKADEMIK 2022/2023

SYLLABUS

I. COURSE IDENTITY

Study Program	: Computer Science
Course	: Linear Algebra
Code	: KOMS120301
Semester	: III
SKS	: 3 (Theory)
Prerequisite	: Basic Mathematics
Lecturer	: Ni Luh Dewi Sintiari, Ph.D.

II. COURSE DECRIPTION

Linear Algebra course discusses the basics of Linear Algebra related to Computer Science and can be implemented in the field of Computer Science. The material discussed in this course includes the concepts of matrices and vectors, systems of linear equations, determinants and inverses of square matrices, Euclid's vector space, basis and dimensions of vector spaces, linear transformations, eigenvalues and eigenvectors, inner product space, diagonalization, decomposition. singular values, and the application of linear algebra.

III. LESSON OUTCOMES

- 1. Attitude
 - S1. Pious of the God Almighty and able to show a religious attitude.
 - S2. Upholding human values in carrying out duties based on religion, morals, and ethics.
 - S8. Internalize academic values, norms and ethics.
 - S9. Demonstrate an attitude of responsibility for work in their field of expertise independently.
 - S10. Internalize the spirit of independence, struggle, and entrepreneurship.
- 2. Knowledge
 - P1. Able to understand and master the basic concepts of computer science in general such as mathematics, algorithms, programming, and databases.
 - P2. Able to understand and master the concept of software development, starting from requirements analysis, design, development, and implementation of software.
- 3. General Skill
 - KU1. Able to apply logical, critical, systematic, and innovative thinking in the context of the development or implementation of science and

technology that pays attention to and applies humanities values in accordance with the field of computer science.

- KU2. Able to demonstrate independent, quality, and measurable performance.
- KU3. Able to study the implications of the development or implementation of science and technology that pays attention to and applies humanities values in accordance with the field of computer science based on scientific principles, procedures and ethics in order to produce solutions, ideas, designs or art criticism.

4. Spesific Skill

KK1. Skilled in analyzing requirements, designing, and implementing designs, and testing software.

IV. LEARNING METHOD

The learning method used is the lecture method, cooperative learning, presentation, and group work.

V. REFERENCE

- 1. Elementary Linear Algebra (Applications Version) Ed. 11, Howard Anton & Chris Rorres
- 2. Slide Kuliah Aljabar Linier (in Indonesian), by Rinaldi Munir, Institut Teknologi Bandung.
- 3. Lecture slides Linear Algebra, by Dewi Sintiari

VI. OUTLINE OF LEARNING PLAN

No.	Capaian Pembelajaran	Learning Outcomes	Topics
	(CP)		
1	S1, S2, S8, S9, S10, P1, P2,	Students are able to understand the role of	Introduction to
	KU1, KU2	Linear Algebra in Computer Science as well as	Linear Algebra
		the basic topics of mathematics supporting	
2		Linear Algebra course. Students are able to understand the concept of	Matrices
2	S1, S2, S8, S9, S10, P1, P2,	matrices, types of matrices, and operations on	widthces
	KU1, KU2, KU3, KK1	matrices, and apply them in problem solving	
		properly and correctly.	
3	S1, S2, S8, S9, S10, P1, P2,	Students are able to understand the concept of	System of Linear
	KU1, KU2, KU3, KK1	the System of Linear Equations (SLE), the	Equations
		representation of the SLE in the form of a	1
		matrix, as well as the operations that can be	
		performed to solve the SLE, and implement	
4		them in problem solving properly and correctly. Students are able to apply Gaussian elimination	Gaussian
4	S1, S2, S8, S9, S10, P1, P2, KU1, KU2, KK1	and Gauss-Jordan elimination methods to solve	Elimination dan
	KUI, KUZ, KKI	multi-variable SLE properly and correctly.	Gauss-Jordan
			Elimination
5	S1, S2, S8, S9, S10, P1, P2,	Students are able to apply the method of	Determinants
	KU1, KU2, KK1	calculating determinants (either combinatorial or	Determinants
		with cofactor expansion) to compute	
		determinants of matrices and use them in	
		problem solving properly and correctly.	
6	S1, S2, S8, S9, S10, P1, P2,	Students are able to understand the concept of	Inverses
	KU1, KU2, KK1	the inverse of a square matrix, as well as its	
		relationship to determinants and SLE, and apply	
7	S1, S2, S8, S9, S10, P1, P2,	it in problem solving properly and correctly. Students are able to understand the concept of	VecTors
	KU1, KU2, KK1	vectors in spaces \mathbb{R}^2 , \mathbb{R}^3 , and \mathbb{R}^n , as well as	VECTOIS
	KUI, KUZ, KKI	operations related to them.	
8		MIDTERM EVALUATION	
9	S1, S2, S8, S9, S10, P1, P2,	Students are able to understand the concept of	Vector Space
	KU1, KU2, KK1	Euclid's vector space, general vector space, and	
	, , , , , , , , , , , , , , , , , , ,	sub-vector space, as well as related operations	
		(addition and multiplication of scalar vectors)	
		and apply them in solving simple problems	
		properly and correctly.	
10	S1, S2, S8, S9, S10, P1, P2,	Students are able to understand the concept of	Basis and
	KU1, KU2, KK1	spanned sets in vector space and linear combinations between vectors in vector space,	Dimension of
		and apply the concepts to find the standard/non-	Vector Space
		standard basis and compute the dimensions of	
		vector spaces properly and correctly.	
11	S1, S2, S8, S9, S10, P1, P2,	Students are able to perform transformation	Basis

			-
	KU1, KU2, KK1	between bases in a vectors space, and relate it to	Transformations,
		the column, row, and null spaces.	Column/Row/Null
			spaces
12	S1, S2, S8, S9, S10, P1, P2,	Students are able to understand the concept of	Linear
	KU1, KU2, KU3, KK1	linear transformation and solve related problems properly and correctly.	Transformation
13	S1, S2, S8, S9, S10, P1, P2,	Students are able to understand the concepts of	Eigenvalues and
	KU1, KU2, KK1	eigenvalues, eigenvectors, eigenspaces, and matrix diagonalizations, and solve related	Eigenvectors
		problems properly and correctly.	
14	S1, S2, S8, S9, S10, P1, P2,	Students are able to understand the concept of	Inner Product
	KU1, KU2, KK1	inner product and related operations, inner	Spcae
		product space, Gram-Schmidt procedure, and	1
		solve related problems properly and correctly.	
15	S1, S2, S8, S9, S10, P1, P2,	Students are able to understand the concept of	Singular Value
	KU1, KU2, KK1	matrix decomposition, such as QR	Decomposition
		decomposition, LU decomposition, and singular	
		value decomposition, and solve related problems	
		properly and correctly.	
16		FINAL EVALUATION	

Approved by, Study Program Coordinator,

Lecturer,

A.A. Gede Yudhi Paramartha, S.Kom., M.Kom. NIP. 198806222015041003 Ni Luh Dewi Sintiari, Ph.D. NIR. 1992050820220102014